Ceph@UAB Empowering Research

John-Paul Robinson
Research Computing
University of Alabama at Birmingham
SC15 Ceph in HPC BoF
November 18, 2015

Hardware: Data Intensive Scientific Computing¹

- 144 2.8TD drives
- 144 8GB DIMMS
- 24 8-core CPUs
- 12 Dell R720xd enclosures
- 12 dual-port Intel X510 10GigE cards
- 1 48-port S4820 10g switch
- Acquired 2012Q3

Research Computing System

Experiment 0: Emergency Storage

- Hardware arrival coincided with unexpected primary scratch file system failure
- Used Gluster to span across 4 nodes: 48 disks, no compute
- Worked very nicely and got us out of a pickle
- Returned to our mainline scratch a few weeks later
- Left 24 disks assigned via Gluster to our Galaxy science gateway, but no compute

Experiment 1: Ceph + OpenStack

- 2012Q4 learned Dell was working with OpenStack and a little gem called Ceph
- Ceph was exactly what we needed to solve our disk aggregation problem
- Crowbar/OpenStack/Hadoop is what we wanted to solve our compute needs
- PoC: 6 x Dell R720xd
 - 4 R720xd Ceph nodes: 44 osd -- leaving 64 cores and 384GB RAM untaxed
 - 2 R720xd Nova nodes: 32 cores and 192GB of RAM -- leaving 20 disks (56TB) unused
- Today in Ceph:
 - 77 osds: 77 up, 77 in
 - 65644 GB data
 - 128 TB used
 - 67200 GB / 193 TB avail (66% used)

Experiment 2: Research Storage

- Thin provision RBD devices
- RBD-to-NFS gateway using rbd and nfsd kernel module (Thanks <u>Sebastien Hann</u>!)
- Expose research storage drives to HPC cluster
- "First Terabyte Free"
- Today:
 - 259 containers
 - 268 TB allocated
 - 46 TB used
 - Almost 6:1 over provisioning
- Those who use it fill it!

Experiment N: Developers Love Freedom

Research Computing OpenStack Usage April 2013 to October 2015

The Lessons

- Early adoption means fixing things
 - Network drivers, to get clean 10G performance
 - Gdisk and ceph-disk-prepare, partition bug cost 30% storage
- Don't provision too many things into one container
 - a.k.a. know how you pack your containers so you can safely repack them
 - Leads to underutilized compute
 - Semi-static provisioning and using storage (data is not easy to move)
- Have enough hardware
 - Set aside enough to treat as single function black box storage (production)
 - HPC prod and dev tend to sit on top of each other
 - Without the dynamic provisioning context of an SGE or SLURM job this is more difficult to manage
- Storage acquisition is not the problem
 - It's easy and cheap to buy disks
 - IT processes tend to be the problem: how deployed, how maintained, how charged
- Moving forward
 - · Buying more storage: all-in-wonder or developer toolbox?
 - Ceph dynamic provisioning model is crucial
 - OpenStack is central to provisioning compute, network, and storage
 - Want better use of compute